Действия с дробями 7 класс, повторение, сравнение, сокращение, решение уравнений

0

В начале первой четверти семиклассники на уроках математики активно повторяют все действия, как с обыкновенными, так и с десятичными дробями. И делают они это не просто так.

В 7 классе по программе обучения начинается алгебра. Дроби будут состоять уже из алгебраических выражений, многочленов. Все действия с такими уже <<сложными>> дробями основываются на умении решать обыкновенные дроби в пятом шестом классе.

Дроби повторение 7 класс

Повторение начинается с самых простых примеров на все арифметические действия с обыкновенными дробями. Не забываем, что там где знаменатели разные следует найти общий, и только потом выполнять действия.

img1 img6 img4 img7 slide_10

Сравнение дробей 7 класс

Для того, чтобы научиться сравнивать дроби, нужно узнать несколько способов по их сравнению, и выбрать для себя более понятный и удобный.

Основные правила сравнения дробей:

pr1-4

В первом правиле мы сравниваем только числители, так как знаменатели равны. Мы уже говорили, что знамен.-это общее количество долей, а числитель показывает сколько их взято из общего, следовательно, чем больше долей взято, тем и дробь соответственно больше.

При одинаковых числ-х сравнивают только знамен. Чем он меньше, тем больше дробь. Разберемся, почему так. К примеру разделите 10 на 5 и 10 на 2, очевидно, что второе частное больше первого. Поэтому, если сравнить 10/5 и 10/2, то 10/2 будет больше.

В десятичных дробях мы сравниваем их соответствующие целые части и дробные. Если первые равны, то мы сравниваем десятые, сотые и т.д. Поэтому для сравнения мы должны уравнивать количество дес.знаков.

Также можно сравнить две обыкн.дроби используя число, которое находится в ряду между ними. Какая из дробей окажется больше этого числа, та и будет большей в примере.

Вот несколько интересных способов, как можно сравнить дроби:

spo

Если от вас требуется сравнить десятичную и обыкновенную дроби, можно перевести одну из них в более удобную для вас. И сравнивать вы уже будите либо обыкновенные, либо десятичные.

Еще один хороший способ, дополнить до единицы. Чем больше нужно добавить дроби, чтобы получить целое, тем она будет меньше.

Можно использовать и перекрестное правило,  как в пропорции. Для этого умножаем смотрящие друг на друга числители и знаменатели.

Правила дробей 7 класс

Начиная изучать рациональные дроби в седьмом классе, стоит познакомиться с рядом правил, которым подчиняются действия с ними.

od

К рациональным дробям применяются те же правила, что и к обыкн-м.

img5

Для выполнения всех арифметических действий, следует знать несколько формул сокращенного умножения:

img0

Эти формулы понадобятся на уроках математики до 11 класса, поэтому их лучше выучить сразу в седьмом.

Действия с дробями 7 класс

Как в пятом и шестом, так же и в седьмом классе, дроби в основном складывают, вычитают, умножают и делят. Есть еще сокращение и сравнение. Рациональные дроби также называют алгебраическими.

Сложение и вычитание.

00

К примеру, b/3 + c/3. Это сумма рациональных или алгебраических дробей. Решением будет: b+c/3.

Еще пара примеров.

01 02

Умножение и деление.

Так же как и с обыкновенными дробями, умножать будем числитель на числитель, и знам. на знаменатель. Очень важно обратить внимание на то, что вы умножаете многочлены, поэтому каждый числитель и знаменатель лучше взять в скобки. Так вы сможете избежать ненужных ошибок.

И деление выполняется в точности также как и в обык.дробях. Первую дробь оставьте на месте без изменений, поменяйте частное на умножение, вторую дробь переверните.

Сложение и вычитание дробей 7 класс

Никогда не начинайте выполнять действия не упростив выражения. Выполните все возможные преобразования и пример решится намного легче и быстрее. Также числители второй и последующих дробей при сложении и вычитании стоит взять в скобки. Очень часто возникают ошибки только из-за одного неправильно поставленного знака. Будьте внимательны.

Если перед скобкой стоит <<+>>, раскрываем ее, не меняя знаки внутри. Если << — >>, то все меняем на противоположные.

Пример.

simple_sum_algebraic_fractions_solved

Знаменатели совершенно одинаковые, находим сумму числ. Приведите подобные, это с и 2с, d и -d, которые в свою очередь взаимно уничтожаются, так как имеют разные знаки. В итоге остается с+2с = 3с. Ответ: 3с/2а.

Все намного проще, если знам. одинаковые. С разными нужно немного подумать.

03

Пример.

04

В примере два знам. 15а и 3. Нам нужно найти общий. В этом случае проще домножить 3 так, чтобы получить 15а. Для этого 3 умножаем на 5а. Но чтобы действие было верным, применяем основное свойство дроби, и на 5а умножим еще и числитель. Далее складываем дроби с один.знам.

Деление и умножение дробей 7 класс

Разберем сразу примеры, так как правила уже обговорены выше.

05

В примере выше требуется разделить алгебраические дроби, содержащие выражения со степенью. Здесь важно вспомнить, что при сокращении степеней мы вычитаем из большей степени меньшую.

Первую дробь мы оставили без изменений, вторую перевернули, заменив действие на умножение. Теперь ищем, что можно сократить. Сначала смотри на числовые коэффициенты. Сокращаем 7 и 35, 9 и 18. Затем сокращаем буквенную часть.

06

Для удобства возьмите каждый многочлен в скобки. Мы видим, что сразу можно сократить скобку (7-х). Многие допускают ошибку, считая что (a-b)  и (a+b) сократимы, это большая ошибка. Ведь к примеру, 5-2 и 5+2 совершенно разные выражения.

Конечные десятичные дроби 7 класс

img4-1

Десятичные дроби отличаются друг от друга по количеству знаков (цифр) после запятой. Соответственно своему названию, у конечной десятичной дроби после запятой, конечное число знаков: 5, 0235; 2,3654; 0,12 и т.д.

Любую такую дробь можно перевести обратно в обыкновенную. 2,36 = 2 целых 36/100. Но не каждую обыкновенную можно представить в виде конечной дес.дроби. В таком случае уже получается бесконечная дес.дробь.

img6-1

Уравнения с дробями 7 класс на примерах с пояснением

Уравнения с дробями можно решить используя пропорцию, или светси решение к этому. Первое уравнение и ему подобные очень просто и быстро решается пропорцией. Используем умножение <<крест на крест>>.

cross_on_proportion

2

Бывают и более сложные уравнения, которые нужно преобразовать.

rule_of_proportion_in_equation

Здесь уже нужно вспомнить правило умножения скобки на число или раскрытие скобок. На число перед скобкой умножаем каждое слагаемое в скобке. Значит 7 умножим и на 2, и на (-х). Далее решаем как обычное линейное уравнение.

another_equation_proportion_solving

В следующем уравнении разберем два способа решения.

Первый вариант решения основывается на избавлении от знаменателей, дабы превратить дробное уравнение в линейное. Для этого умножаем каждое слагаемое на общий для дробей знаменатель. В нашем случае 45.

linear_equation_with_unknown_in_fraction

multy_equation_with_number

Сокращаем и получаем линейное уравнение. Раскрываем в нем скобки, находим подобные слагаемые.

solving_equation_with_unknown_in_fraction_with_no_fractions

Вторым вариантом будет приведение к общему знаменателю в правой части, и сведению решения к пропорции.

solving_equation_with_unknown_in_fraction solving_equation_with_unknown_in_fraction_like_proportion

Сокращение дробей 7 класс

При сокращении рациональных дробей используем правило сокращения обык.др. Числитель и знаменатель делим на один многочлен.

detail_reducing_algebraic_fraction_solved short_reducing_algebraic_fraction_solved

Запомните, что разные буквенные части мы не сокращаем, только одинаковые.

deny_reducing_algebraic_fractions

Дроби, в числ. и знамен. которых стоит выражение (многочлен) тоже сократимы. В таких дробях можно сокращать только одинаковые многочлены. Многочлены разделены между собой умножением.

differ_ploynomials_in_algebraic_fraction

deny_reducing_algebraic_fractions_polynomials allow_reducing_algebraic_fractions_polynomials

simple_examples_reducing_algebraic_fractions

Также можно использовать формулы сокращ. умножения.

algebraic_fraction_fsu_solved

Еще пара примеров:

examples_of_reducing_algebraic_fractions_polynomials

Об Авторе

Оставить комментарий